
AO-A114 60'4 ROYAL SIGNALS AND RADAR ESTABLISHMENT MALVERN 4ENGLAND) F/G Q/2
ADA ON MULTIPLE OROCESSORS,IU)
MAR 82 J A MCDERMIO

UNCLASSIID RSEMEMO-364 DRIC-OR83066 NL

JIILf EMl 132

336 L

"1.25 h

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STAN6ARDS-IA63-A

Aceessos For

ROYAL SIGNALS AND RADAR ESTABLISHMENT ITISw

DTIC TAB
Memorandum 3464 Unanounced

Zust tficat ion-

TITLE: ADA ON MULTIPLE PROCESSORS

AUTHOR: John A McDermid b Distribution/

DATE: 11 March 1982 Availability Codes

Dist Special

SUMMARY

his paper considers a number of possible ways of implementing the Ada
rendezvous in a computer system comprising a number of processors. It shows
that, in principle, a two phase protocol requiring four messages to be passed
is necessary to implement the rendezvous correctly when timed calls are used.
However in many cases a simpler, one phase, protocol requiring only two
messages per rendezvous can be used.

A comparison is made between the rendezvous and message based
comnmunication for situations where one to many, rather than one to one,
communication is required. The rendezvous is shown to be very inefficient
for implementing one to many communication. Finally some of the problems of
loading and running Ada programs are briefly considered.

This memorandum is tor advance information. It is not necessarily to be
regarded as a final or official statement by Procurement Executive. Ministry
of Defence

Copyright
C

Controller HMSO London
1982

1) Tntroluction

The purpose of this locument is to discuss the problems of implementing
AA a on a Multiple Processor Comuter System and to compare possible ways of
overcoming these problems. We shall be concernel primarily with how a
rendezvous can be achieve between tasks running on lifferent computers, as
t-his seems to be the main technical problem. We will ompare the different
ways of implementing the rerrezvous in terms of the number of inter -
computer messages, and context switches which they require as these are
(probably) the two most important aspects of the overheais involved in
Proviing the rerrezvous.

2) Assumptions

We make the following basic assumnitions about the characteristics of the
Multiple Processor System (MPS) on which we wish to implement Ma. First, it
se-ems that the implementation of the rendezvous in a system having shared
main memory can be achieved simply by extending a single processor
imlementation. Tt is less obvious how to implement the rendezvous without
shareI main memory, so we will concentrate our attention on such Multi
Computer Systems (MCS) * As a consequence we will assume that Parameters and
results are passe by value rather than by reference.

Secondi, we assume that there is a kernel running in each computer which
supports the Ada tasks, performs schedu7ing andI providles the mechanisms for
inter - comuter commuication. WP assume that the kernel need not be
written in Mda.

Third, we assume that the coxmunication system provides the abstraction
of total reliability, so we will not consider the problems of lost messages
etc. Tilicitly this means that the transmission of a single message, at the
user Program level, may require many low level, messages to be transuitted3.
We will always quote the number of messages required by a particular
implementation of the rendiezvous at the user Program level as this qives the
simplest basis for comparison.

Finally, we Aistinquish two lifferent types of context switch. A Task
t- rontext Switch ('!q) occurs when a task is scheduled3 or suspended for same

reason (e.q. waitingq for an entry call to be accevtel) * An Interrupt Context
,- Switch (TCr) occurs when an interrupt hanler is entered or exited. We will

assume that an TCS; only occurs twice per received message although this may
be very far from the truth with worl or byte orientedi conmmunication systems.
One might expect that the time required to Perform an TCS will be smaller

thnthat required to perform a ICtS, although this will not universally he

Tt is Perhaos worth noting that the Nassi - Rabermann optimisaticn

cannot be performed when the comunicating tasks are in different coimutera.i
'4owever it might be possible to exploit this optimisation if sharedI main
memory is available.

3) Simple Rendezvous

4Vy a simple rertiezvous we wean one where the calling task calls the
entry uncoritionally (amd without timeouts), and the called task
unconitionally accepts the call (although not necessarily immediately it is
issued) . Nlaturally we assume that the calling ant) called tasks are runniing
on searate computers. I*h simple rendezvous can be implemented as indicated
below:

2

Call ing Task Called Task

entry call
sus; n a] .scheiule

accept

! a

_return
return-msg'*- -- suspend

sched ule-
return

This straightforwarA implementation requires two messages to be passed
between the cxmputers, and requires two ICS in each machine to handle the
receipt of the messages. In the calling task two "CS are required. In the
called task u to two 'TS may be required, but the number deoends on whether
or not the task is active inmeliately before and after the reniezvous. 'his
comment applies throughout the following discussion.

Tf necessary exceptions can be returned to the calling task: e.g.
Tasking Error can be returned if the called task has terminated.

41 Conitional Entry Calls

These can he implemented in the same basic way as the simple rendezvous,
except that a rejection may have to be returned, rather than the result of
executing the entry procedure. Tt is pssible that two 7its will be required
in the called task even if the call is rejected. These context switches can
be avoided if the kernel (interrupt handling routines) can preserve enough
information about the called task to know whether or not a rendezvous is
oossible, without entering the environment of the called task.

5) selective Waits

c lective waits can be implemented using the basic method described

above.

5) Timed Entry Calls

5.1) Introduction

If timed entry calls were implemented by the above mechanism it is
Possible that the timeout might expire, causing the calling task to execute
its alternative code, whilst the called task was executing the entry. ibis
eventuality would be a violation of the rerdezvous semantics, and clearly
must be avoiled.

For a timed entry call, the timing is performed on acceptance of the
entry call, not on the execution of the entry. This means that (in principle
at least) information needs to be passed back to the calling task once the
call is accepted, as well as on the completion of the call. This is the
basis of our first alternative solution below.

,.21 Simple AOach

- --3 - t

I'he simplest approach to implementinq timed entry calls seems to be to
use a two chase "harrishake* protocol. The first chase qoverns the acceptance
of -he call, anI the second is equivalent to the protocol 4escribel in
section I controlling the execution of the entry. The execution of the
protocol would be as follows if the call were successful:

Calling Task Called Task

entry call
susoirni 'c msg **~

schelule

accept
report accept

accept ackA- susperny
scheule* - -

call confirm
suapenl -- confirm m e

---IOschedIule
execute-entry

return
return m ' - " susperdschede *-.. --

return

TIis requires four messages, four 'CS for each task, and four ICS for each
task.

Because of the timeout it is possible for the calle task to accept the
entry call after the callers timeout has expired, and the task has continued
execution. There are two ways of recovering from this situation: the calling
task can be "rollel back", so that the entry is executed; or the acceptance
of the call can be cancelled. The former course may be very difficult,
especially if the calling task has entered into communication with other
tasks, or performed some I/M before the acceot message is received. The
latter course oe ,y requires the information recording the acceptance of the
call to be changed (as the callel task will be suspende). Clearly the

4 latter approach is much simpler to achieve and it correctly implements the
semantics of the timed call.

The hehaviour will be as follows for a call which is not accepted before
the timeout expires:

Calling Task Called Task

entry-callsuspenA m c ag.usel achedule

accept
time out report accept
sche4ul.e accept ackA - - rt susiep t

aOrt entry---- -T abort_ mag
' ot g - hchedule

cancel accept
susagri

This recmires three mesages, two ICS in the calling task, and four in the
callel task. Itere will be two ICS in the calling task, and four in the
callei task.

4

A problem which arises with this implementation is dealing with accept
messages which arrive long after the timeout has expired, and the calling
task has continue- with its alternative action. There seem to be two
possible avproaches. The kernel could maintain information regarding the
incomplete rendezvous until the accept message is received and the abort
message can be qeneratel. This technique may give problems with storage
management if large numbers of rendezvous have to be "remembered".
Alternatively, the incomplete rendezvous can be forgotten and the kernel can
responA to any unrecognised accept message with an abort message. This
latter technique will not impose storage overheads but it has the
lisadvantage that it will not help in the detection of certain error
conitions, such as trying to comm unicate with a task that has already
terminated.

Clearly this straightforwarda implementation is quite costly in terms of
messages and context switches. %here are, however, more efficient ways of
implementing the rendezvous which may be applicable in some circumstances.
These methods rely on being able to execute the timeout in the calle task.

r.3) Timing at Both Ends

When calling the entry, the calling task could transmit the timeout
duration to the callel task. Assuming that both tasks have access to clocks
running at roughly similar rates, then the called task can inspect the
timeout period and not reply if it knows that it will not be able to accept
the call quickly enough. unfortunately we cannot guarantee to avoid the
situation where an accept message is received after the callers timeout has
expired (unless the timing of the com, unication etc. is deterministic and
well known) so we must still cater for the possibility of having to abort
the rendezvous.

6.4) Timing only at Called End

Tf the message delay through the comiuunication system is well known,
deterministic, and short with respect to the timeout period then it may be
possible for the called task to execute the timeout on behalf of the calling
task. If this is the case then we can use a single phase protocol for
nerforming the rendezvous as we Aescribed in section 3. The only change to
the orotocol of section 3 is that the caller task can return a "timed out"
message to the caller in order to allow it to continue without performing
the rend4ezvous.

Ihis implementation is attractive in that it is comparatively efficient.
However there is a problem to do with reliability. If the processor running
the called task fails then the calling task may never (or very belatedly)
receive its timeout message. Ore of the reasons for using timed entry calls
may be to allow detection of, and recovery from, remote failures, in which
case timing at the called end may not be satisfactory. Arguably it should be
the responsibility of the kernel to detect remote failures and to return a
suitable exception to the task. However the time taken by the kernel to
Aetect the failure may be much longer than the time the calling task is
willing to wait. It seems therefore that there will be circumstances under
which the two phase protocol will have to be used.

' qumary of Rendezvous Implementations

We have described a umber of ways in which the rendezvous can be
imlemente. Th most efficient method which we can use is a simple, ao

chase protocol as described in section 6.4. This protocol can cater for the
simple rendezvous, conditional rendezvous and, under some circumstances,
with timei rendezvous. 1his orotocol will typically require two messaqes,
two 7CS per task, and two ICS Per task.

For the circumstances where the one phase protocol is not acceptable,
e.q. where we wish to recover from the failure of remote computers, then the
two phase protocol describei in section 6.2 will have to be used. This
protocol has twice the overhead of the single chase orotocol if the
rendezvous is completed successfully. if the rendezvous is not completed
(due to E timeout expiring) then the overheads are rather lower.

9) Comparison with Message Passing

R.11 Message Passing Paradiqms

there are essentially three listinct forms of message passing inter
process cotmunication scheme. The simolest simply consists of the sender
transmitting a messaqe, an] continuing execution without an acknowledgement
ever being returned. 1his scheme loes not make it easy to detect remote
failures or lost messages, but may be quite appropriate under certain
circumstances - e.q. transmission of data from a sensor, where the loss of
the occassional reading will not adversely affect the behaviour of the
system.

The second paradigm is that of one process sending a message, then
waiting until the message is acknowleqel by the process which received the
message. This method gives scope for detecting and recovering from certain
classes of errors (e.g. lost messages caused by communications failures),
and clearly matches the semantics of the rendezvous.

The thiri paradigm is that of sending a message and receiving an
explicit acknowledgement, with the sending process able to continue
processing between sending the message and receiving the acknowledgement.
The advantage this offers over the second method is that concurrency is
improved since the sending process may be performing useful work whilst
waiting for an acknowledgement. This form of behaviour can only be achieved
in aa by the artifice of creating a task specifically for performing the
inter - task communication, thus allowing the parent task to continue
executing. This technique can have severe disadvantages as describei below.

8.2) The Two Phase Commit Protocol

We Iescribe the implementation of the Two Phase Commit Protocol in Ma
as it serves to show the problems which arise from the fact that a task
cannot continue executing between sending a message and receiving an
acknowledgement (i.e. the task is suspendeA whilst the rendezvous is in
progress). We believe this protocol to be a very salient example as it is
widely used a way of ensuring consistency control in distributes Iatabase
systems.

Ie can adequately describe the most important features of the Two Pase
Comit Protocol (2PM by the following examole. Tmagine that we have a
replicated latabase with a total of N copies, and we wish to uplate the
1aabase so that all the copies remain in step. In essence we wele to update
all the copies indivisibly. This is achieved by one task (the control task)
notifyinq all the copies that an upiate is to be performed, ard the tasks
responsible for the copies either acknowledge that they can perform the
Uvdate, or say that the uplate tws to be aborted because it conflicts with

----------------------------. I.II~il

some update alrealy in progress. ihis is the first, or notification, phase.
The originating task then either informs all the cooperating tasks that the
upiate must be aborted, or instructs them to perform the update, as
appropriate. Tn the latter case the tasks will update their copies of the
database, then return acknowleAgements to the originatinq task. This is the
second, or uolate, phase.

Clearly the implementation of the protocol will be complicated by the j
need to leal with failures of remote computers etc., but the basic form is
not affected by these considerations. Using our third paradiqm for the
messaqe Passing moAel, the 2PC control task can transmit messages to all N
tasks, then wait for acknowleigements, in both the first and second phases.
Thus the messaqe passinq iiscipline allows us to achieve a high degree of
concurrency.

If we imDlemented the ?PC protocol in Ada the simplest way would be to
Perform the communication with each of the N cooperating tasks in turn, thus
having V rervezvous in series in the first phase, and similarly for the
second phase. Note that this alrea-iy requires twice as many messages and
context switches as the message based implementation. This implementation
will obviously be slow as the inherent parallelism is lost.

in order to improve parallelism we coull implement the protocol so that
the controlling task spawned M subtasks to Perform the communication. his
has the unesirable side effect of increasing the number of TCS as control
passes between the main and the subtasks. if seoarate subtasks were used for
each phase, and task/subtask synchronisation can be achieved by use of
shared variables, then this requires at least another R ICS, making a total
of 16N 'IS, four times the number required using message passing. It will be
quite awkward determining when each phase has finished - perhaps the easiest
way being to use the subtask statusses to 1etermine when they have all
terminated.

It might be possible to improve on these overheads by creating N
subtasks for the duration of the 2C operation, however this would mean that
we woul' have to use rend4ezvous between the subtasks and the control task in
order to signal the end of each phase. This still requires IN WiS, but would
involve less orocess creation and destruction which must themselves be
expensive operations. However it is possible that some of these contexts
switches can be eliminateA by Performing optimisations, analogous to the
Nassi - Rabermann optimisations.

Some MCS communication systems crovile broadcast facilities which can
provide very efficient l:many communication. The Ida rendezvous does not
allow such hardware to be exploited.

In short it seems that Ma will enforce very expensive, and quite
complex implementations of Protocols of the above form. Since this form of
protocol will be at the heart of any Distributed Database Manager, ad of
many other MCS aplications, Ma may be a very poor %foice of implementation
language from the moint of view of efficiency, an simplicity of
implementation.

Q) Program LoAding an qardware Maging

The mapping of the Ma Program onto the available hardware must be
specified at some stage in the program 4evelopment and loading process,
unless the upping is to be chosen automatically by the programing mapport
environment. Tt shoul he fairly straightforwar- to specify the maing

.- f1

either as pragmata in the program source text, or as commands to the program
loadinq system, although it may be difficult to decide what this mapoing
shoull be. We are not concerned with the problems of deciding on a mapping,
rather on what should be loadel, and how it can be executed.

!n varticular we are concerne with what shouli happen to the "main
body" of the program. For the sake of simplicity let us assume that the main
body of the program consists of a sequence of declarations of tasks which
are to be run on a number of separate machines. Clearly the code for the
individual tasks should be loaded on the 3esiqnatel machines together with
code for instantiating the tasks. Adress information to allow inter-task
communication must also be male available to the kernel (this may be
regarded as the vestige of the declarations of the other tasks). We can rely
on the semantics of the rendezvous to ensure correct behaviour despite the
fact that tasks which wish to communicate may be created at significantly
different times.

The above solution is satisfactory so long as no task tries to create a
task to run in another machine. Tf tasks can be created in other machines,
then a mechanism has to be provided for one kernel to request another to
create ani run a task. his facility may cause problems if the orocesses in
separate machines wish to share data, ar it may also lead to difficulties
in scheduling, and in assessing the amount of mill time absorbed by any
task, etc. Similar comments apply to the inclusion of executable code in the
main body of the vroqram.

Tt WOUI seem to be by far the simplest if Ada programs to run in MCS
were restricte in the following ways. First, the main boly may only consist
of the dleclaration of tasks. Second, no task may create a task to run on
another machine. It seems likely that these restrictions would be acceptable
in practice.

10) Conclusions

We have described some possible ways in which an Ada rendezvous could be
implemented in an MCS. We have also considered the overheads of using the
rendezvous where we wish to perform I:N, rather than 1:1, communication. We
have shown that the overheals of using the Ada rendezvous as oposel to a
message based communication system are quite larqe. This is, perhaps, not
surprising as procedure calls are fundamental within a single computer, but
message passinm, rather than remote procedure calls, are fundamental to
communication systems.

We have briefly consilered the problem of loading and executing Ada
programs, ar we have suggested a rule for constructing and maping Ada
programs which would simplify their implementation on an MCS.

We have not covered all the important issues to do with imolementing Ada
on an MCS. For example we have iqnored problems of deciling on a good
software to hardware mapping; how we test and monitor program execution; how
we extend or replace parts of the running program etc. ?his omission can be
Justified by saying that the other problems are pertinent to other
programing languages, not Just 41a. What we have tried to do is to
concentrate on those problems which seem to be peculiar to Ma.

S-Il

... .' -- ti 1 l I I I I I

